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Abstract. Irreducible tensor operators of su(2), are defined based an the coproduct is 
constructed by using the Jordan-Schwinger mapping. 

Recently, the representations of the quantum algebra su(2), are thoroughly discussed 
based on the q-harmonic oscillator realizations [ 1-81 for the case of q being not a root 
of unity. In this case the properties of quantum algebras are quite similar to those of 
classical Lie algebras in connection with both the representation theory and the possible 
applications. Besides the application in solving the Yang-Baxter equations [ 9 ] .  It has 
been shown that rotational spectra of nuclei and molecules can be described very 
accurately in terms of a Hamiltonian which is proportional to the second-order Casimir 
operator of the quantum algebra su(2), [lo, 111. In view of the similar properties of 
quantum algebras to those of classical algebras, it may also be possible to define tensor 
operators, reduced matrix elements, etc, for quantum algebras. 

The quantum algebra 4 2 1 ,  is generated by J+, J-  and Jo under the relations 

[ J o ,  J*I=*J+ (1) 

[J+,  J - l = [ 2 J o 1  ( 2 )  

where for given x 

which reduce to the usual relations among generators of su(2) in the limit q +  1. 
An algebra homomorphism (coproduct) A :  su(2), + su(2),Osu(2), reads 

A(&) = Jo,OIQ1 0 Jo ( 4 a )  

A(J,)= J , O q " ' ~ @ q - ' ~ ~ J , .  ( 4 6 )  

Let us consider an associative boson algebra % ( q )  with units generated by three 
elements b, b+ and N which satisfy the relation 

[ N, b t ]  = bt [ N , b ] = - b  ( 5 )  

bb+-q"b+b=q". ( 6 )  
To introduce star operation in B(q) we suppose that q is real, 

( b ) ' =  b+ (b+)' = b N+= N. (7) 
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Then the relations ( 5 )  and ( 6 )  are invariant under the star anti-involution. Other useful 
relations are 

qdNbqrN = bq'l (8) q*Nb+q'N = btq*I 

which can be derived from ( 5 ) .  
The Jordan-Schwinger realizations of su(2), has been given by many authors [4-61. 

Using two kinds of q-deformed boson operators ( b t ,  bi, Nj, i = 1,2), one can define 

J+ = b:bz J _ =  bib, ( 9 )  

[J+ 3 J - I  = [2501 (10)  

( 1 1 )  

and find 

where 

J,  = N ,  - N z .  

The related realizations of the basis vectors Ijm), of su(2), can he defined as 
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Using the definition ( 1 9 )  and Jordan-Schwinger realizations of su(2),, we can 
directly prove that both 

and 

are irreducible tensor operators of rank k for su(2), 
From equations (20) and (21)  we obtain 

( = ( - ) k - m q - ( k - - m l T k  

which also contract to the conjugation relation of irreducible tensor operators of s u ( 2 )  
WLICIL q i 1. 

Using the Wigner-Eckart theorem, we have 

,(J’m’I T)n(q)ljm”l, = (jm”kmlj’m’)q(j’ll T’(q )  Ilj), (23) 
where ( j ’ ~ ~ T k ( q ) ~ ~ j ) q  is the su(2), reduced matrix element, and (jm”kmlj‘m’), is the 
su(2), CG coefficient. 

Let D P  denote ?-representation obtained from the coupling D i O  D?. then the 
transpose P,2 satisfies 

P,,Dii‘= D$d$p,2 (24) 
which gives the symmetry properties of su(2), CO coefficient 

(Jlmlhm2ljm),  
- -\-,, ILI\J,+J,-J,: . - , , ,=%,j2=%dj-x>q-: 

Taking the matrix element of (22) and using the Wigner-Eckart theorem and symmetry 
properties given by (25), we obtain 

Finally, we give some reduced matrix elements of T*,(q)  and V: (q )  

( j + ~ I I ~ ” 2 ( q ) I I j ) q  = ([2j+11)1’2 

(j-$11 V”z(q) l l j )q = - (q- ’ [2 j+ I])’/’ (27) 

for which the corresponding CG coefficients are 

(28) 
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and 

( j  f kl( Tk(q)  11 j ) ,  = ( : 2 k + 2 j 1 ! )  ' I 2  
2 k ] ! [ Z j ] !  

for which the corresponding CG coefficients are 

( j m  k p l j f k  m + q ) ,  
- - q ( k - ~ J ( j + m J / 2 - ( k + p J ( j - m J / 2  

[ Z k ] ! [ Z j ] ! [ k + p + j + m ] ! [ j + k - p - m ] !  
[ k + p ] ! [ k  - p ] !  [ j +  m ] ! [ j -  m ] ! [ Z k + 2 j ] !  

)"'. (30) 
[Zk] ! [Z j -Zk+  l ] ! [ j + m ] ! [ j - m ] !  

( [ k  + p ] ! [ k  - p ] !  [ j - k - m - P I ! [  j - k + m + p ] !  [2 j+  I ] !  
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